
Asynchronous I/O Support in Linux 2.5

Suparna Bhattacharya
Steven Pratt

Badari Pulavarty
Janet Morgan

IBM Linux Technology Center
suparna@in.ibm.com, slpratt@us.ibm.com,

pbadari@us.ibm.com, janetmor@us.ibm.com

Abstract

This paper describes the Asynchronous I/O
(AIO) support in the Linux® 2.5 kernel, addi-
tional functionality available as patchsets, and
plans for further improvements. More specifi-
cally, the following topics are treated in some
depth:

• Asynchronous filesystem I/O

• Asynchronous direct I/O

• Asynchronous vector I/O

As of Linux 2.5, AIO falls into the common
mainline path underlying all I/O operations,
whether synchronous or asynchronous. The
implications of this, and other significant ways
in which the design for AIO in 2.5 differs from
the patches that existed for 2.4, are explored as
part of the discussion.

1 Introduction

All modern operating systems provide a vari-
ety of I/O capabilities, each characterized by
their particular features and performance. One

such capability is Asynchronous I/O, an impor-
tant component of Enterprise Systems which
allows applications to overlap processing with
I/O operations for improved utilization of CPU
and devices.

AIO can be used to improve application per-
formance and connection management for web
servers, proxy servers, databases, I/O intensive
applications and various others.

Some of the capabilities and features provided
by AIO are:

• The ability to submit multiple I/O requests
with a single system call.

• The ability to submit an I/O request with-
out waiting for its completion and to over-
lap the request with other processing.

• Optimization of disk activity by the kernel
through combining or reordering the indi-
vidual requests of a batched I/O.

• Better CPU utilization and system
throughput by eliminating extra threads
and reducing context switches.

Linux Symposium 352

2 Design principles

An AIO implementation can be characterized
by the set of design principles on which it is
based. This section examines AIO support in
the Linux kernel in light of a few key aspects
and design alternatives.

2.1 External interface design alternatives

There are at least two external interface design
alternatives:

• A design that exposes essentially the same
interfaces for synchronous and asyn-
chronous operations with options to dis-
tinguish between mode of invocation [2].

• A design that defines a unique set of inter-
faces for asynchronous operations in sup-
port of AIO-specific requirements such
as batch submission of different request
types [4].

The AIO interface for Linux implements the
second type of external interface design.

2.2 Internal design alternatives

There are several key features and possible ap-
proaches for the internal design of an AIO im-
plementation:

• System design:

– Implement the entire path of the op-
eration as fully asynchronous from
the top down. Any synchronous I/O
is just a trivial wrapper for perform-
ing asynchronous I/O and waiting
for its completion [2].

– Synchronous and asynchronous
paths can be separate, to an extent,

and can be tuned for different
performance characteristics (for
example, minimal latency versus
maximal throughput) [10].

• Approaches for providing asynchrony:

– Offload the entire I/O to thread
pools (these may be either user-level
threads, as in glibc, or kernel worker
threads).

– Use a hybrid approach where initi-
ation of I/O occurs asynchronously
and notification of completion oc-
curs synchronously using a pool of
waiting threads ([3] and [13]).

– Implement a true asynchronous state
machine for every operation [10].

• Mechanisms for handling user-context de-
pendencies:

– Convert buffers or other such state
into a context-independent form at
I/O submission (e.g., by mapping
down user-pages) [10].

– Maintain dedicated per-address
space service threads to execute
context-dependent steps in the
caller’s context [3].

The internal design of the AIO support avail-
able for Linux 2.4 and the support integrated
into Linux 2.5 differ on the above key features.
Those differences will be discussed in some
detail in later sections.

Other design aspects and issues that are rele-
vant to AIO but which are outside the main fo-
cus of this paper include ([8] describes some of
these issues in detail):

• The sequencing of operations and
steps within an operation that supports

Linux Symposium 353

POSIX_SYNCHRONIZED_IO and
POSIX_PRIORITIZED_IO require-
ments ([5]), as well as the extent of
flexibility to order or parallelize re-
quests to maximize throughput within
reasonable latency bounds.

• AIO throttling: deciding on the queue
depths and returning an error (-EAGAIN)
when the depth is exceeded, or if re-
sources are unavailable to complete the re-
quest (rather than forcing the process to
sleep).

• Completion notification, queuing, and
wakeup policies including the design of a
flexible completion notification API and
optimization considerations like cache-
warmth, latency and batching. In the
Linux AIO implementation, every AIO
request is associated with a completion
queue. One or more application threads
explicitly wait on this completion queue
for completion event(s), where flexible
grouping is determined at the time of
I/O submission. An exclusive LIFO
wakeup policy is used among multiple
such threads, and a wakeup is issued
whenever I/O completes.

• Support for I/O cancellation.

• User/kernel interface compatibility (per
POSIX).

2.3 2.4 Design

The key characteristics of the AIO implemen-
tation for the Linux 2.4 kernel are described in
[8] and available as patches at [10]. The de-
sign:

• Implements asynchronous I/O paths and
interfaces separately, leaving existing syn-
chronous I/O paths unchanged. Reuse of

existing, underlying asynchronous code is
done where possible, for example, raw
I/O.

• Implements an asynchronous state ma-
chine for all operations. Processing oc-
curs in a series of non-blocking steps
driven by asynchronous waitqueue call-
backs. Each stage of processing com-
pletes with the queueing of deferred work
using "work-to-do" primitives. Sufficient
state is saved to proceed with the next
step, which is run in the context of a ker-
nel thread.

• Maps down user pages during I/O submis-
sion. Modifies the logic to transfer data
to/from mapped user pages in order to re-
move the user-context dependency for the
copy to/from userspace buffers.

The advantages of these choices are:

• Synchronous I/O performance is unaf-
fected by asynchronous I/O logic, which
allows AIO to be implemented and tuned
in a way that is optimum for asynchronous
I/O patterns.

• The work-to-do primitive permits state to
be carried forward to enable continua-
tion from exactly where processing left off
when a blocking point was encountered.

• The need for additional threads to com-
plete the I/O transfer in the caller’s con-
text is avoided.

There are, however, some disadvantages to the
AIO implementation (patchset) for Linux 2.4:

• The duplication of logic between syn-
chronous and asynchronous paths makes
the code difficult to maintain.

Linux Symposium 354

• The asynchronous state machine is a com-
plex model and therefore more prone to
errors and races that can be hard to debug.

• The implementation can lead to inefficient
utilization of TLB mappings, especially
for small buffers. It also forces the pin-
ning down of all pages involved in the en-
tire I/O request.

These problems motivated a new approach for
the implementation of AIO in the Linux 2.5
kernel.

2.4 2.5 Design

Although the AIO design for Linux 2.5 uses
most of the core infrastructure from the 2.4 de-
sign, the 2.5 design is built on a very different
model:

• Asynchronous I/O has been made a first-
class citizen of the kernel. Now AIO
paths underlie regular synchronous I/O in-
terfaces instead of just being grafted from
the outside.

• A retry-based model replaces the ear-
lier work-to-do state-machine implemen-
tation. Retries are triggered through asyn-
chronous notification as each step in the
process completes. However in some
cases, such as direct I/O, asynchronous
completion notification occurs directly
from interrupt context without requiring
any retries.

• User-context dependencies are handled by
making worker threads take on (i.e., tem-
porarily switch to) the caller’s address
space when executing retries.

In a retry-based model, an operation executes
by running through a series of iterations. Each

iteration makes as much progress as possible
in a non-blocking manner and returns. The
model assumes that a restart of the operation
from where it left off will occur at the next
opportunity. To ensure that another opportu-
nity indeed arises, each iteration initiates steps
towards progress without waiting. The itera-
tion then sets up to be notified when enough
progress has been made and it is worth trying
the next iteration. This cycle is repeated until
the entire operation is finished.

The implications and issues associated with the
retry-based model are:

• Tuning for the needs of both synchronous
and asynchronous I/O can be difficult
because of the issues of latency ver-
sus throughput. Performance studies are
needed to understand whether AIO over-
head causes a degradation in synchronous
I/O performance. It is expected that the
characteristics are better when the under-
lying operation is already inherently asyn-
chronous or rewritten to an asynchronous
form, rather than just modified in order to
be retried.

• Retries pass through some initial pro-
cessing steps each time. These process-
ing steps involve overhead. Saving state
across retries can help reduce some of the
redundant regeneration, albeit with some
loss of generality.

• Switching address spaces in the retry
thread can be costly. The impact would
probably be experienced to a greater ex-
tent when multiple AIO processes are run-
ning. Performance studies are needed to
determine if this is a problem.

Note that I/O cancellation is easier to handle in
a retry-based model; any future retries can sim-
ply be disabled if the I/O has been cancelled.

Linux Symposium 355

Retries are driven by AIO workqueues. If a
retry does not complete in a very short time, it
can delay other AIO operations that are under-
way in the system. Therefore, tuning the AIO
workqueues and the degree of asynchrony of
retry instances each have a bearing on overall
system performance.

3 AIO support for filesystem I/O

The Linux VFS implementation, especially as
of the 2.5 kernel, is well-structured for retry-
based I/O. The VFS is already capable of pro-
cessing and continuing some parts of an I/O
operation outside the user’s context (e.g., for
readahead, deferred writebacks, syncing of file
data and delayed block allocation). The im-
plementation even maintains certain state in
the inode or address space to enable deferred
background processing of writeouts. This abil-
ity to maintain state makes the retry model
a natural choice for implementing filesystem
AIO.

Linux 2.5 is currently without real support
for regular (buffered) filesystem AIO. While
ext2, JFS and NFS define theiraio_read
and aio_write methods to default to
generic_file_aio_read/write ,
these routines show fully synchronous behav-
ior unless the file is opened withO_DIRECT .
This means that anio_submit can block for
regular AIO read/write operations while the
application assumes it is doing asynchronous
I/O.

Our implementation of the retry model for
filesystem AIO, available as a patchset from
[6], involved identifying and focusing on the
most significant blocking points in an opera-
tion. This was followed by observations from
initial experimentation and profiling results,
and the conversion of those blocking points to
retry exit points.

The implementation we chose starts retries at a
very high level. Retries are driven directly by
the AIO infrastructure and kicked off via asyn-
chronous waitqueue functions. In synchronous
I/O context, the default waitqueue entries are
synchronous and therefore do not cause an exit
at a retry point.

One of the goals of our implementation for
filesystem AIO was to minimize changes to ex-
isting synchronous I/O paths. The intent was
to achieve a reasonable level of asynchrony in
a way that could then be further optimized and
tuned for workloads of relevance.

3.1 Design decisions

• Level at which retries are triggered:

The high-level AIO code retries filesys-
tem read/write operations, passing in the
remaining parts of the buffer to be read or
written with each retry.

• How and when a retry is triggered:

Asynchronous waitqueue functions are
used instead of blocking waits to trigger
a retry (to "kick" a dormantiocb into ac-
tion) when the operation is ready to con-
tinue.

Synchronous routines such as
lock_page , wait_on_page_
bit , andwait_on_buffer have been
modified to asynchronous variations.
Instead of blocking, these routines queue
an asynchronous wait and return with a
special return code,-EIOCBRETRY .

The return value is propagated all the way
up to the invoking AIO handler. For this
process to work correctly, the calling rou-
tine at each level in the call chain needs to
break out gracefully if a callee returns the
-EIOCBRETRY exit code.

• Operation-specific state preserved across
retries:

Linux Symposium 356

In our implementation [7], the high-level
AIO code adjusts the parameters to read
or write as retries progress. The parame-
ters are adjusted by the retry routine based
on the return value from the filesystem
operation indicating the number of bytes
transferred.

A recent patch by Benjamin LaHaise
[11] proposes moving the filesystem API
read/write parameter values to the
iocb structure. This change would en-
able retries to be triggered at the API level
rather than through a high-level AIO han-
dler.

• Extent of asynchrony:

Ideally, an AIO operation is completely
non-blocking. If too few resources ex-
ist for an AIO operation to be completely
non-blocking, the operation is expected to
return-EAGAIN to the application rather
than cause the process to sleep while wait-
ing for resources to become available.

However, converting all potential block-
ing points that could be encountered
in existing file I/O paths to an asyn-
chronous form involves trade-offs in
terms of complexity and/or invasiveness.
In some cases, this tradeoff produces only
marginal gains in the degree of asyn-
chrony.

This issue motivated a focus on first
identifying and tackling the major block-
ing points and less deeply nested cases
to achieve maximum asynchrony benefits
with reasonably limited changes. The so-
lution can then be incrementally improved
to attain greater asynchrony.

• Handling synchronous operations:

No retries currently occur in the syn-
chronous case. The low-level code distin-
guishes between synchronous and asyn-
chronous waits, so a break-out and retry

occurs only in the latter case while the
process blocks as before in the event of
a synchronous wait. Further investiga-
tion is required to determine if the retry
model can be used uniformly, even for the
synchronous case, without performance
degradation or significant code changes.

• Compatibility with existing code:

– Wrapper routines are needed for
synchronous versions of asyn-
chronous routines.

– Callers that cannot handle asyn-
chronous returns need special care
e.g., making sure that a synchronous
context is specified to potentially
asynchronous callees.

– Code that can be triggered in
both synchronous and asynchronous
mode may present some tricky is-
sues.

– Special cases like code that may
be called via page faults in asyn-
chronous context may need to be
treated carefully.

3.2 Filesystem AIO read

A filesystem read operation results in a page
cache lookup for each full or partial page of
data requested to be read. If the page is already
in the page cache, the read operation locks the
page and copies the contents into the corre-
sponding section of the user-space buffer. If
the page isn’t cached, then the read operation
creates a new page-cache page and issues I/O
to read it in. It may, in fact, read ahead sev-
eral pages at the same time. The read operation
then waits for the I/O to complete (by waiting
for a lock on the page), and then performs the
copy into user space.

Linux Symposium 357

Based on initial profiling results the crucial
blocking points identified in this sequence
were found to occur in:

• lock_page

• cond_resched

• wait_on_page_bit

Of these routines the following were converted
to retry exit points by introducing correspond-
ing versions of the routines that accept a wait-
queue entry parameter:

lock_page --> lock_page_wq
wait_on_page_bit -->

wait_on_page_bit_wq

When a blocking condition arises, these
routines propagate a return value of-
EIOCBRETRY from generic_file_
aio_read . When unblocked, the waitqueue
routine which was notified activates a retry of
the entire sequence.

As an aside, the existing readahead logic helps
reduce retries for AIO just as it helps reduce
context switches for synchronous I/O. In prac-
tice, this logic does not actually cause a volley
of retries for every page of a large sequential
read.

The following routines are other potential
blocking points that may occur in a filesystem
read path that have not yet been converted to
retry exits:

• cond_resched

• meta-data read (get block and read of
block bitmap)

• request-queue congestion

• atime updates (corresponding journal up-
dates)

Making the underlying readpages operation
asynchronous by addressing the last three
blocking points above might require more de-
tailed work. Initial results indicate that signif-
icant gains have already been realized without
doing so.

3.3 Filesystem AIO write

The degree of blocking involved in a syn-
chronous write operation is expected to be less
than in the read case. This is because (unless
O_SYNCor O_DSYNCare specified) a write
operation only needs to wait until file blocks
are mapped to disk and data is copied into
(written to) the page cache. The actual write
out to disk typically happens in a deferred way
in the context of background kernel threads or
earlier in the process via an explicit sync opera-
tion. However, for throttling reasons, a wait for
pending I/O may also occur in write context.

Some of the more prominent blocking points
identified in the this sequence were found to
occur in:

• cond_resched

• wait_on_buffer (during a get block
operation)

• find_lock_page

• blk_congestion_wait

Of these, the following routines were converted
to retry exit points by introducing correspond-
ing versions of the routines that accept a wait-
queue entry parameter:

down --> down_wq
wait_on_buffer --> wait_on_buffer_wq
sb_bread --> sb_bread_wq
ext2_get_block --> ext2_get_block_wq
find_lock_page --> find_lock_page_wq
blk_congestion_wait -->

blk_congestion_wait_wq

Linux Symposium 358

The asynchronous get block support has cur-
rently been implemented only for ext2, and
only used byext2_prepare_write . All
other instances where a filesystem-specific get
block routine is involved use the synchronous
version. In view of the kind of I/O patterns ex-
pected for AIO writes (for example, database
workloads), block allocation has not been a fo-
cus for conversion to asynchronous mode.

The following routines are other potential
blocking points that could occur in a filesys-
tem write path that have not yet been converted
to retry exits:

• cond_resched

• other meta-data updates, journal writes

Also, the case whereO_SYNC or O_DSYNC
were specified at the time when the file was
opened has not yet been converted to be asyn-
chronous.

3.4 Preliminary observations

Preliminary testing to explore the viability
of the above-described approach to filesystem
AIO support reveals a significant reduction in
the time spent inio_submit (especially for
large reads) when the file is not already cached
(for example, on first-time access). In the write
case, asynchronous get block support had to
be incorporated to obtain a measurable bene-
fit. For the cached case, no observable differ-
ences were noted, as expected. The patch does
not appear to have any effect on synchronous
read/write performance.

A second experiment involved temporarily
moving the retries into theio_getevents
context rather than into worker threads. This
move enabled a sanity check usingstrace to
detect any gross impact on CPU utilization.

Thorough performance testing is underway to
determine the effect on overall system perfor-
mance and to identify opportunities for tuning.

3.5 Issues and todos

• Should the cond_resched calls in
read/write be converted to retry points?

• Are asynchronous get block implementa-
tions needed for other filesystems (e.g.,
JFS)?

• Optional: should the retry model be
used for direct I/O (DIO) or should syn-
chronous DIO support be changed to wait
for the completion of asynchronous DIO?

• Should relevant filesystem APIs be modi-
fied to add an explicit waitqueue parame-
ter?

• Should theiocb state be updated directly
by the filesystem APIs or by the high-level
AIO handler after every retry?

4 AIO support for direct I/O

Direct I/O (raw andO_DIRECT) transfers
data between a user buffer and a device with-
out copying the data through the kernel’s buffer
cache. This mechanism can boost performance
if the data is unlikely to be used again in the
short term (during a disk backup, for exam-
ple), or for applications such as large database
management systems that perform their own
caching.

Direct I/O (DIO) support was consolidated and
redesigned in Linux 2.5. The old scalability
problems caused by preallocating kiobufs and
buffer heads were eliminated by virtue of the
new BIO structure. Also, the 2.5 DIO code
streams the entire I/O request (based on the un-
derlying driver capability) rather than breaking
the request into sector-sized chunks.

Linux Symposium 359

Any filesystem can make use of the
DIO support in Linux 2.5 by defining a
direct_IO method in the address_
space_operations structure. The method
must pass back to the DIO code a filesystem-
specific get block function, but the DIO
support takes care of everything else.

Asynchronous I/O support for DIO was added
in Linux 2.5. The following caveats are worth
noting:

• Waiting for I/O is done asynchronously
but multiple points in the submission
codepath can potentially cause the process
to block (such as the pinning of user pages
or processing in the filesystem get block
routine).

• The DIO code callsset_page_dirty
before performing I/O since the rou-
tine must be called in process context.
Once the I/O completes, the DIO code—
operating in interrupt context—checks
whether the pages are still dirty. If
so, nothing further is done; otherwise,
the pages are made dirty again via a
workqueue run in process context.

5 Vector AIO

5.1 2.5 readv/writev improvements

In Linux 2.5, direct I/O (raw andO_DIRECT)
readv/writev was changed to submit all seg-
ments or iovecs of a request before waiting
for I/O completion. Prior to this change, DIO
readv/writev was processed in a loop by calling
the filesystem read/write operations for each
iovec in turn.

The change to submit the I/O for all iovecs
before waiting was a critical performance fix
for DIO. For example, tests performed on an

aic-attached raw disk using 4Kx8 readv/writev
showed the following improvement:

Random writev 8.7 times faster
Sequential writev 6.6 times faster
Random readv sys time improves 5x
Sequential readv sys time improves 5x
Random mixed I/O 5 times faster
Sequential mixed I/O 6.6 times faster

5.2 AIO readv/writev

With the DIO readv/writev changes integrated
into Linux 2.5, we considered extending the
functionality to AIO. One problem is that
AIO readv/writev ops are not defined in
the file_operations structure, nor are
readv/writev part of the AIO API command
set. Further, the interface toio_submit is
already an array ofiocb structures analogous
to the vector of a readv/writev request, so a real
question is whether AIO readv/writev support
is even needed. To answer the question, we
prototyped the following changes [12]:

• addedaio_readv/writev ops to the
file_operations structure

• definedaio_readv/writev ops in the
raw driver

• added 32- and 64-bit readv and writev
command types to the AIO API

• added support for readv/writev command
types tofs/aio.c :

fs/aio.c | 156 ++++
include/linux/aio.h | 1
include/linux/aio_abi.h | 14 ++++
include/linux/fs.h | 2
4 files changed, 173 insertions(+)

5.3 Preliminary results

With the above-noted changes, we were able to
test whether anio_submit for N iovecs is

Linux Symposium 360

more performant than anio_submit for N
iocbs.

io_submit for N iocbs:

io_submit -->

iocb[0] |aio_buf|aio_nbytes|read/write opcode|

iocb[1] |aio_buf|aio_nbytes|read/write opcode|
...

iocb[N-1] |aio_buf|aio_nbytes|read/write opcode|

io_submit for N iovecs:

io_submit -->
--

iocb[0] |aio_buf|aio_nbytes=N|readv/writev opcode|
--
| ----------------

--> iovec[0] |iov_base|iov_len|

iovec[1] |iov_base|iov_len|
...

iovec[N-1] |iov_base|iov_len|

Based on preliminary data [1] using direct I/O,
an io_submit for N iovecs outperforms an
io_submit for N iocbs by as much as two-
to-one. While there is a singleio_submit in
both cases, aio readv/writev shortens codepath
(i.e., one instead of N calls to the underlying
driver method) and normally results in fewer
bios/callbacks.

5.4 Issues

The problem with the proposed support for
AIO readv/writev is that it creates code re-
dundancy in the custom and generic filesys-
tem layers by adding two more methods to the
file_operations structure. One solution
is to first collapse theread/write/readv/
writev/aio_read/aio_write methods
into simplyaio_read andaio_write and
to convert those methods into vectored form
[11].

6 Performance

6.1 System setup

All benchmarks for this paper were performed
on an 8-way 700MHz Pentium™III machine

with 4GB of main memory and a 2MB L2
cache. The disk subsystem used for the
I/O tests consisted of 4 IBM® ServeRAID-
4H™dual-channel SCSI controllers with 10
9GB disk drives per channel totalling 80 phys-
ical drives. The drives were configured in sets
of 4 (2 drives from each channel) in a RAID-
0 configuration to produce 20 36GB logical
drives. The software on the system was SuSE
Linux Enterprise Server 8.0. Where noted in
the results, the kernel was changed to 2.5.68
plus required patches [7]. For AIO benchmark-
ing, libaio-0.3.92 was installed on the system.

6.2 Microbenchmark

The benchmark program used to analyze AIO
performance is a custom benchmark called
rawiobench [9]. Rawiobench spawns multiple
threads to perform I/O to raw or block devices.
It can use a variety of APIs to perform I/O
including read/write , readv/writev ,
pread/pwrite and io_submit . Support
exists for both random and sequential I/O and
the exact nature of the I/O request is depen-
dent on the actual test being performed. Each
thread runs until all threads have completed a
minimum number of I/O operations at which
time all of the threads are stopped and the total
throughput for all threads is calculated. Statis-
tics on CPU utilization are tracked during the
run.

The rawiobench benchmark will be run a num-
ber of different ways to try to characterize the
performance of AIO compared to synchronous
I/O. The focus will be on the 2.5 kernel.

The first comparison is designed to measure
the overhead of the AIO APIs versus using
the normal read/write APIs (referred to as the
"overhead" test). For this test rawiobench will
be run using 160 threads each doing I/O to
one of the 20 logical drives for both sequen-
tial and random cases. In the AIO case, an

Linux Symposium 361

io_submit/io_get_events pair is sub-
mitted in place of the normal read or write call.
The baseline synchronous tests will be referred
to in the charts simply as "seqread" "seqwrite"
"ranread" "ranwrite" with an extension of ei-
ther "ODIR" for a block device opened with
the O_DIRECT flag or "RAW" for a raw de-
vice. For the AIO version of this test, "aio" is
prepended to the test name (e.g., aioseqread).

The second comparison is an attempt to reduce
the number of threads used by AIO and to take
advantage of the ability to submit multiple I/Os
in a single request. To accomplish this the
number of threads for AIO was reduced from
8 per device to 8 total (down from 160). Each
thread is now responsible for doing I/O to ev-
ery device instead of just one. This is done by
building anio_submit with 20 I/O requests
(1 for each device). The process waits for all
I/Os to complete before sending new I/Os. This
AIO test variation is called "batch mode" and
is referred to in the charts by adding a "b" to
the front of the test name (e.g., bseqaioread).

The third comparison will improve upon the
second by having each AIO process calling
io_getevents with a minimum number
equal to 1 so that as soon as any previously
submitted I/O completes, a new I/O will be
driven. This AIO test variation is called "min-
imum batch mode" and is referred to in the
charts by adding a "minb" to the front to the
test name (e.g., minbseqaioread).

In all sequential test variations, a global offset
variable per device is used to make sure that
each block is read only once. This offset vari-
able is modified using thelock xadd assem-
bly instruction to ensure correct SMP opera-
tion.

Figure 1: Sequential Read Overhead

6.3 Results, comparison and analysis

Raw andO_DIRECT performed nearly iden-
tically on all of the benchmarks tests. In order
to reduce redundant data and analysis, only the
data fromO_DIRECT will be presented here.

For the first comparison of AIO overhead, the
results show that there is significant overhead
to the AIO model for sequential reads (Figure
1). For small block sizes where the benchmark
is CPU bound, the AIO version has signifi-
cantly lower throughput values. Once the block
size reaches 8K and we are no longer CPU
bound, AIO catches up in terms of throughput,
but averages about 20% to 25% higher CPU
utilization.

In Figure 2 we can see the performance of
random reads using AIO is identical to syn-
chronous I/O in terms of throughput, but av-
erages approximately 20% higher CPU utiliza-
tion. By comparing synchronous random read
plus seeks with random pread calls (Figure 3)
we see that there is minimal measurable over-
head associated with having two system calls
instead of one. From this we can infer that the
overhead seen using AIO in this test is associ-
ated with the AIO internals, and not the cost of
the additional API call. This overhead seems

Linux Symposium 362

Figure 2: Random Read Overhead

Figure 3: read vs. pread

excessive and probably indicates a problem in
the AIO kernel code. More investigation is re-
quired to understand where this extra time is
being spent in AIO.

For write performance we can see that AIO
achieves approximately the same level of
throughput as synchronous I/O, but at a signif-
icantly higher cost in terms of CPU utilization
at smaller block sizes. For example, during the
sequential write test at 2K block sizes, AIO
uses 97% CPU while synchronous uses only
55%. This mirrors the behavior we see in the
read tests and is another indication of problems
within the AIO code.

Figure 4: Sequential Write Overhead

Figure 5: Random Write Overhead

Linux Symposium 363

Figure 6: Sequential Read Batch

Figure 7: Random Read Batch

Batch mode AIO performs poorly on the se-
quential and random read tests. Throughput is
significantly lower as is CPU utilization (Fig-
ures 6,7). This is probably due to the fact that
we can drive more I/Os in a single request than
the I/O subsystem can handle, but we must wait
for all the I/Os to complete before continuing.
This results in multiple drives being idle while
waiting for the last I/O in a submission to com-
plete.

AIO batch mode also under-performs on the
write tests. While CPU utilization is lower, it
never achieves the same throughput values as
synchronous I/O. This can be seen in Figures 8
and 9.

Figure 8: Sequential Write Batch

Figure 9: Random Write Batch

Linux Symposium 364

Figure 10: Sequential Read Minimum Batch

Minimum batch mode improves considerably
on the overhead and batch mode tests; how-
ever, forO_DIRECT access AIO either lags
in throughput or uses more CPU for all block
sizes in the sequential read test (Figure 10).
For the random read test minimum batch mode
AIO has identical throughput to synchronous
reads, but uses from 10% to 20% more CPU
in all cases (Figure 11). Sequential minimum
batch mode AIO comes close to the perfor-
mance (both throughput and CPU utilization)
of synchronous, but does not ever perform bet-
ter.

Minimum batch mode sequential writes, like
reads, lag behind synchronous writes in terms
of overall performance (Figure 12). This dif-
ference gets smaller and smaller as the block
size increases. For random writes (Figure 9),
the difference increases as the block size in-
creases.

Since we are seeing lower CPU utilization for
minimum batch mode AIO at smaller block
sizes we tried increasing the number of threads
in that mode to see if we could drive higher I/O
throughput. The results seen in Figure 14 show
that indeed for smaller block sizes that using 16
threads instead of 8 did increase the through-
put, even beating synchronous I/O at the 8K
block size. For block sizes larger than 8K the

Figure 11: Random Read Minimum Batch

Figure 12: Sequential Write Minimum Batch

Figure 13: Random Write Minimum Batch

Linux Symposium 365

increase in number of threads either made no
difference, or causes a degradation in through-
put.

Figure 14: Sequential Read Minimum Batch
with 16 threads

In conclusion, there appears to be no con-
ditions for raw or O_DIRECT access un-
der which AIO can show a noticeable bene-
fit. There are however, cases where AIO will
cause reductions in throughput and higher CPU
utilization. Further investigation is required to
determine if changes in the kernel code can be
made to improve the performance of AIO to the
level of synchronous I/O.

It should be noted that at the larger block sizes,
CPU utilization is so low (less than 5%) for
both synchronous I/O and AIO that the dif-
ference should not be an issue. Since using
minimum batch mode achieves nearly the same
throughput as synchronous I/O for these large
block sizes, an application could choose to use
AIO without any noticeable penalty. There
may be cases where the semantics of the AIO
calls make it easier for an application to coordi-
nate I/O, thus improving the overall efficiency
of the application.

6.3.1 Future work

The patches which are available to enable AIO
for buffered filesystem access are not stable
enough to collect performance data at present.
Also, due to time constraints, no rawiobench
testcases were developed to verify the effec-
tiveness of the readv/writev enhancements for
AIO [12]. Both items are left as follow-on
work.

7 Acknowledgments

We would like to thank the many people
on the linux-aio@kvack.org and
linux-kernel@vger.kernel.org
mailing lists who provided us with valuable
comments and suggestions during the devel-
opment of these patches. In particular, we
would like to thank Benjamin LaHaise, author
of the Linux kernel AIO subsystem. The
retry based model for AIO, which we used
in the filesystem AIO patches, was originally
suggested by Ben.

This work was developed as part of the Linux
Scalability Effort (LSE) on SourceForge
(sourceforge.net/projects/lse).
The patches developed by the authors and
mentioned in this paper can be found in the
"I/O Scalability" package at the LSE site.

8 Trademarks

This work represents the view of the authors and
does not necessarily represent the view of IBM.

IBM and ServeRAID are trademarks or regis-
tered trademarks of International Business Ma-
chines Corporation in the United States, other coun-
tries, or both.

Pentium is a trademark of Intel Corporation in the
United States, other countries or both.

Linux Symposium 366

Windows is a trademark of Microsoft Corporation
in the United States, other countries or both.

Linux is a trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

References

[1] AIO readv/writev performance data.
http://osdn.dl.sourceforge.
net/sourceforge/lse/
vector-aio.data .

[2] Asynchronous I/O on Windows® NT.

[3] Kernel Asynchronous I/O
implementation for Linux from SGI.
http:
//oss.sgi.com/projects/kaio .

[4] POSIX Asynchronous I/O.

[5] Open Group Base Specifications Issue 6
IEEE Std 1003.1.
http://www.opengroup.org/
onlinepubs/007904975/toc.
htm , 2003.

[6] Suparna Bhattacharya. 2.5 Linux Kernel
Asynchronous I/O patches.
http://sourceforge.net/
projects/lse .

[7] Suparna Bhattacharya. 2.5 Linux Kernel
Asynchronous I/O rollup patch.
http://osdn.dl.sourceforge.
net/sourceforge/lse/
aiordwr-rollup.patch .

[8] Suparna Bhattacharya. Design Notes on
Asynchronous I/O for Linux.
http://lse.sourceforge.net/
io/aionotes.txt .

[9] Steven Pratt Bill Hartner. rawiobench
microbenchmark.
http://www-124.ibm.com/
developerworks/opensource/
linuxperf/rawread/rawr%ead.
html .

[10] Benjamin LaHaise. 2.4 Linux Kernel
Asynchronous I/O patches.
http://www.kernel.org/pub/
linux/kernel/people/bcrl/
aio/patches/ .

[11] Benjamin LaHaise. Collapsed read/write
iocb argument-based filesystem
interfaces.
http://marc.theaimsgroup.
com/?l=linux-aio&m=
104922878126300\&w=2 .

[12] Janet Morgan. 2.5 Linux Kernel
Asynchronous I/O readv/writev patches.
http://marc.theaimsgroup.
com/?l=linux-aio&m=
103485397403768\&w=2 .

[13] Venkateshwaran Venkataramani
Muthian Sivathanu and Remzi H.
Arapaci-Dusseau. Block Asynchronous
I/O: A Flexible Infrastructure for User
Level Filesystems.
http://www.cs.wisc.edu/
~muthian/baio-paper.pdf .

Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

